
AMD ROCm Tools Progress:
Profiler/Tracer, Debugger, OMPT,
OmniTools and Binary Instrumentation
Support

Timour Paltashev
with help of Ammar Elwazir, Tony Tye, Laurent Morichetti,

Dhruva Chakrabarti, Zoran Zaric and Nursultan Kabylkas

Scalable Tools Workshop’2023

2 |

AMD ROCm Tools Ecosystem Essentials

MLSE
Compiler
& Tools
Team

DC GPU
BU

Industrial
Partners

DOE
National

Labs

Academic
Partners

 MLSE in cooperation with DC GPU BU provides
funding of both 3rd party tools and libraries
projects

 MLSE provides the equipment and technical
cooperation with biweekly status review with
tools ecosystem 3rd party contributors

 MLSE Tools projects are in three major domains

‒HPC/ML Code Debugging

‒HPC/ML Code Profiling and Tracing

‒HPC/ML Code Instrumentation (source&binary)

 Both academic and industrial partners involved
(including indirect ones) in collaboration with
National Labs

 Mostly open-source projects except integration
with commercial product

3 |

AMD ROCm Tools Landscape

ROCgdb
Debugger

GDB 13

based

LDS

Variables

Navi 3.X
support

Linaro
Forge DDT

Theia IDE

ROCdbgapi
Debugger API

ROCm
Debug
Agent

ROCgdb

Perforce
TotalView

HPCToolkit

ROCprofilerV1

ROCtracerV1

Exa-PAPI,
LIKWID

ROCprof V1,

 TAU

HPCToolkit,

OmniPerf

Score-P,
OmniTrace

Caliper,
Trace

Compass

ROCprofiler
V2

Work in
progress with
ROCprof V2

Single unified
library

Fixing issues
with V1

Clients,
services &

buffers
introduced

New functions
and PC

Sampling in V2
API

M-R GPU ISA
XML Spec

Joint effort with
RTG Tools for

Instinct and
Radeon Products

For binary
instrumentation

and ISA
simulators

Autogenerated
from HW

definition files

Machine-
readable XML

format with API

Executable with
verified semantics

OmniTools

AMD Research

OmniPerf
Support for

MI100/ MI200/
MI300

OmniPerf
Roofline And

AMDGPU Perf.
Models

OmniTrace
Profiling &

Tracing Tool

OmniTrace:
Collection of

runtime & system-
level metrics

OMPT

Support

HIP

capture

/instrmt

/play

Exa-

Tracer:

ROCm

+ LTTng

HIP

Program

textbook

2nd ed.

4 |

5 |

ROCm Tools: Debugger Status

6 |

Debugger Architecture

• Debugger Process

• Gdb Debugger

• AMD GPU Debugger API

• AMD GPU Code Object Manager

• Application Process

• Application: CPU and GPU

• HIP Language Runtime

• ROCm Low Level Runtime

• AMD GPU Device Driver Thunk

• AMD GPU Trap Handler

• AMD GPU Firmware

• Linux Kernel

• Linux Kernel

• AMD GPU Device Driver

7 |

Debugger: Features Progress

• ROCm 5.6 (June 2023)

➢Rebased on GDB 13

➢Debug information support for variables in LDS

• ROCm 5.7 (August 2023)

➢Watchpoint on scratch memory,

➢Upstream KFD debugging interface and

➢Navi 3X support.

• ROCm 6.0 (November 2023)

➢MI 300 support

8 |

Debugger: DWARF GPU Extension Proposal Chronicle

• Since our discussion with Ben Woodard one year ago when DWARF extension proposal was in the stall....

• Formed a new workgroup called “DWARF extensions for GPUs,” which includes multiple members of the

DWARF committee as well as representatives from the relevant companies

• Perforce, Intel, Red Hat, Mentor Graphics, Cary Coutant

• The workgroup ended up splitting the original proposal into a series of smaller proposals, where each of the

proposals are localized to a specific part of the DWARF specification

• Cary Coutant was appointed as a new DWARF committee chairman after previous one (Michael Eager)

retired.

• Cary still felt that he could make an easier to digest "Location Descriptions on the Stack" proposal, which

would also include the new offset composition operations

• Normative text changes, expression evaluation context definition and other needed extensions, are all

planned to be submitted later and are still being discussed within the workgroup.

• The "Location Descriptions on the Stack" proposal was added to the DWARF issue queue on 25th of May

and is currently being discussed within the DWARF committee

9 |

Debugger: Upstreaming Effort

• Basic support for AMDGPU debugging (enough to set a breakpoint in GPU code and run to it)

https://gitlab.com/gnutools/binutils-gdb/-

/commit/18b4d0736bc570c6d2e3e5f6ebc2ad4617d93847

• Fork and exec handling https://gitlab.com/gnutools/binutils-gdb/-

/commit/5f6d638d3cb8273dac5c5bc1b541066dc41c7bb1

• Planned

➢Precise memory support

➢DWARF expression evaluator reimplementation (pending DWARF proposal progress)

➢Address space support (pending DWARF proposal progress)

https://gitlab.com/gnutools/binutils-gdb/-/commit/18b4d0736bc570c6d2e3e5f6ebc2ad4617d93847
https://gitlab.com/gnutools/binutils-gdb/-/commit/18b4d0736bc570c6d2e3e5f6ebc2ad4617d93847
https://gitlab.com/gnutools/binutils-gdb/-/commit/5f6d638d3cb8273dac5c5bc1b541066dc41c7bb1
https://gitlab.com/gnutools/binutils-gdb/-/commit/5f6d638d3cb8273dac5c5bc1b541066dc41c7bb1

10 |

Debugger: Compiler Support

• Added support for generating debug information for LDS variables

• Added support for architecture address spaces as well as language memory

spaces to the generated type debug information

• Working closely with LLVM upstream community in upstreaming our debug info

LLVM IR extensions

11 |

ROCm Debugger and API Useful Links

• AMD Debugger ROCgdb https://github.com/ROCm-Developer-Tools/ROCgdb

• AMD Debugger API (ROCdbgapi) https://github.com/ROCm-Developer-

Tools/ROCdbgapi

• ROCgdb Documentation

https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html

• ROCdbgapi Documentation

https://rocmdocs.amd.com/projects/ROCdbgapi/en/latest/

https://github.com/ROCm-Developer-Tools/ROCgdb
https://github.com/ROCm-Developer-Tools/ROCdbgapi
https://github.com/ROCm-Developer-Tools/ROCdbgapi
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html
https://rocmdocs.amd.com/projects/ROCdbgapi/en/latest/

OMPT Target Implementation Status

13 |

OMPT Target Implementation Status in ROCm

• Target callbacks invoked at OpenMP target runtime entry points

• Provide tools a way to establish an anchor, e.g., stack frame

• Trace records returned asynchronously to the tool

• Contain information (e.g., timing) corresponding to the anchors

• Target callbacks/trace records implemented for all mandatory execution

events

• Target region, data operations, kernel submit

• Implementation is part of the OpenMP runtime library and the AMDGPU plugin

• Available starting from ROCm 5.1

14 |

OMPT Tool Integration Status

• OMPT target support integrated with HPCToolkit and TAU

• Kernel execution and data transfer timings and metadata can be seen in

callgraph profiles and execution traces

• Score-P integration in progress

• Upstreaming to LLVM trunk in progress, some patches landed, others under

review

15 |

16 |

Binary Instrumentation Support:
AMD GPU Machine Readable XML ISA

Specification

17 |

Project Objectives

Joint effort with AMD RTG Tools and GPU Architecture teams

Develop AMD GPU shader ISA specification with following features:

● Auto-generated from the internal hardware definition files to be consistent with all
details and product versions

● Machine-Readable (M-R) XML format to be used by binary instrumentation tools
and similators (internal and 3rd party)

● Executable, i.e., provides essential information about execution semantics of the
instructions

● Set of auxiliary tools (API) to conveniently access the information in XML
specification

18 |

Related Works

● ARM specified their CPU architecture in XML

○ https://alastairreid.github.io/ARM-v8a-xml-release/

● IBM’s Genesys-Pro instruction generator uses architectural descriptions as an input in
machine readable form

○ https://uobdv.github.io/Design-Verification/Supplementary/GenesysPro.pdf

● Commercial verification tool RAVEN by Obsidian Software uses machine readable
architecture specifications for PowerPC

○ https://www.slideshare.net/DVClub/introducing-obsidian-software-and-ravengcs-for-powerpc

● Academic work by Kamkin et al. developed a machine-readable specification for RISC-V and
ARM architectures in nML language

○ https://riscv.org/wp-content/uploads/2018/12/Machine-Readable-Specifications-of-RISC-V-
ISA-Kamkin-Tatarnikov.pdf

○ https://ieeexplore.ieee.org/document/8746054

● To the best of our knowledge, no similar work has been done in GPU domain

https://alastairreid.github.io/ARM-v8a-xml-release/
https://uobdv.github.io/Design-Verification/Supplementary/GenesysPro.pdf
https://www.slideshare.net/DVClub/introducing-obsidian-software-and-ravengcs-for-powerpc
https://riscv.org/wp-content/uploads/2018/12/Machine-Readable-Specifications-of-RISC-V-ISA-Kamkin-Tatarnikov.pdf
https://riscv.org/wp-content/uploads/2018/12/Machine-Readable-Specifications-of-RISC-V-ISA-Kamkin-Tatarnikov.pdf
https://ieeexplore.ieee.org/document/8746054

19 |

XML ISA Info Layout

● Encodings:

○ Contains information about all encodings supported by this architecture

○ Examples of the provided information by this element: instruction sizes, fields of the binary instruction,
general description of the encoding

● Instructions:

○ List of all instructions in particular GPU architecture

■ This is the core element of the specification

■ Every instruction references other XML elements

■ Examples of provided information by this element: different ways to encode the instruction, the type of
operands, the data format of the operand, etc.

● Data Formats:

○ Provides additional information on how the values in the registers should be treated

■ This element is referenced by instruction element.

■ Examples of provided information by this element: is the value integer or float? If it is float where is mantissa,
exponent and sign?

● Operand Types:

○ The sub-elements of this element are referenced by an instruction element

○ It provides information on the types of the operands used by the instruction

■ Examples of provided information are: is the operand a scalar or a vector register? What is the name of this
operand when represented in assembly?

20 |

Current Version of the Tool

● The XML ISA spec is released with the utility API that provides interfaces for

the common use cases, such as decoding of the binary instructions and

kernels/shaders

● The beta version of the tool has been shared with internal teams and let to

productivity improvements in the development of tools that require ISA data

● It has been also shared with AMD partners and business clients

○ We constantly receive feedback and try to improve the tool

21 |

Ongoing Active Development

● The tools is getting polished for public release

● There is an ongoing effort to embed semantics information into the XML

specification

● Methodology (the bird’s-eye view)

○ Leveraging existing “pseudocode” in the conventional ISA documentation

○ The pseudocode is parsed and represented in a form of an abstract syntax tree

(AST)

○ The AST is embedded into the XML

● Challenges

○ The pseudocode needs to be type checked and functionally verified

ROCprof, Advanced Thread Trace, OmniTools and uProf

23 |

Brief update on suite of AMD performance analysis tools

• Two versions of ROCprof tool provided

• ROCprof V1 tool uses ROCprofiler V1 API

• ROCprof V2 tool uses ROCprofiler V2 API

• The functionality of ROCprof V2 tool is a superset of ROCprof V1 tool

• ROCprof V2 tool has greater support for plugins

• OmniPerf and OmniTrace tools

• Initially may be delivered as separate packages

• Omnitrace has some initial support for multi-node

• Advanced Thread Trace (ATT) tool

• Delivered in ROCm 5.5 with a web interface

• Planning to implement a stand-alone video interface

• Continue to support 3rd party tools through ROCprofiler API and ROCprof tool

plugins

24 |

AMD Research OmniTrace and OmniPerf

AMDGPU performance model document

• Omnitrace is a comprehensive profiling and tracing tool for parallel applications

written in C, C++, Fortran, HIP, OpenCL, and Python which execute on the CPU

or CPU+GPU

• OmniTrace Page https://github.com/AMDResearch/omnitrace

• OmniPerf is a system performance profiling tool for machine learning/HPC

workloads running on AMD MI GPUs. The tool presently targets usage on

MI100 and MI200 accelerators.

• OmniPerf Page https://github.com/AMDResearch/omniperf

• OmniPerf AMDGPU performance model document

• OmniPerf AMDGPU performance model document was developed

• Shared under NDA at the moment, final version will go to public domain

https://github.com/AMDResearch/omnitrace
https://github.com/AMDResearch/omniperf

ROCm Tools: ROCm Profiler Saga V1 → V2

26 |

Some V1 Issues addressed in V2 Development

• Correctness issues

• Correct oddities in API semantics (silently ignoring requests, …)

• Issues with concurrency

• Issues with memory leaks

• Issues with scaling

• Implement as a single unified library versus two separate libs

• Clearly documented intuitive API much easier to follow

27 |

V2 versus V1 Delta

• Unified correlation ID across API operations and asynchronous operations

• Allow multiple services to be enabled at same time

• Allow multiple clients

• Client tool management

• Provide means for client tools to be initialized cleanly

• Helper thread creation notification

• Kernel dispatch serialization for profile counter collection

• Plugin interface to support multiple output trace formats (JSON, CTF, OTF-2,

etc.)

• Addresses performance issues with post processing in V1

28 |

Changes in V2 since first release

• V2 is released as a beta interface that is being evolved in response to user

feedback

• User feedback is driving the changes and makes them acceptable via info

about identified API issues

• Examples

• Fixed header files so can include both tracer and profiler

• Removed C++’isms

• Fixed ROCtracer deadlock issue

• Fixed other issues early adopters reported

• It is ongoing process until V2 architecture will be hardened (based on user’s

feedback)

29 |

Feedback on V2 received from tool developers (ROCprof and 3rd

party)

• ROCm ROCprof V2 tool is using the ROCprofiler V2 API

• Some of the 3rd party tools have investigated the current ROCprofiler V2 API

• Major feedback is that there are numerous issues that need to be resolved
before V2 can be used properly
• Limitation of single session not compatible with multiple clients

• Missing mapping of operation codes to operation names

• Missing calling on entry and exit for API tracing

• Not possible to enable buffered tracing for APIs

• Memory and performance issues

• Many of these issues are being fixed in upcoming releases

• Other issues being addressed by changes to API planned for future releases

• Expect to allow the API evolving from user feedback and get stabilized once
users satisfied

ROCprofiler V2 API

Disclaimer

• Following slides present work in progress on the evolution of the ROCprofiler V2 API

• The final design may differ as it is collaboratively evolved with the users of the API

31 |

Key Concepts

• Clients

• Allows multiple tools to use the API concurrently

• Initial restrictions on services that can be used by clients concurrently

• Services

• Separate API for each functionality provided (callback tracing, kernel dispatch

profiling, …)

• Buffers

• Used by services that want efficient storing of multiple records

• Separate thread to asynchronously return block of records when buffer

reaches a certain size

32 |

Clients

• Create and destroy client handles

• All service operations take a client handle

• Initially only support multiple clients with disjoint services

• Potential future support for multiple clients (tracing, markers…)

33 |

Services: Callback Tracing

• Can enable and disable operations independently

• Calls a client provided callback by same thread that invoked the operation

• HIP/HSA API

• Public API functions

• Provide full arguments of operation

• Call on entry and exit

• Includes host function registration

• Creates correlation ID that is reported by non-API callback operations and buffed tracing that causes

them

• Marker

• Formerly ROCtx

• Code Object Tracing

• Load

• Unload

• Kernel symbol enumeration

• Helper Thread Creation

• Report creation of profiler and runtime helper threads so client tools can ignore them

34 |

Services: Buffered Tracing

• Can enable and disable operations independently

• Add “activity” record to a buffer when enabled operation is executed

• Separate thread to asynchronously return block of records when buffer reaches a certain size

• Record has limited arguments of the operation

• For API operations creates correlation ID that is reported by non-API callback operations and

buffer tracing that causes them

• Can enable callback and buffered tracing for operations they both support

• External correlation ID

• Buffered tracing

• HIP/HSA API Tracing (only essential data put in record)

• Marker

• Memory copy

• Kernel dispatch

• Page migration

• Scratch memory

• Correlation IDs

• Connects API operations to asynchronous completion reporting

35 |

Services: Performance Counter Profiling

• Queries to determine counters available on each agent

• Indicate if counter has multiple instances

• Indicate result type of counter

• Provide name of counter

• Provide raw hardware counters

• Provide derived metric counters defined by XML file

• Define sets of profile counters to collect

• Can query how to collect a set of counters in multiple passes

• Kernel dispatch profiling

• Invoke user callback when dispatch enqueued

• Callback can decide if want to profile and return a profile counter set

• Serializes kernel dispatches

• Agent profiling

• Can enable a profile counter set

• Can request counter values on demand

• Allows device wide profiling

36 |

Services: Other

• Advanced Thread Tracing (ATT)

• Available in V2 current release

• MI200 Page Migration Profiling

• To be added

• PC sampling

• In development

• Streaming Performance Monitors (SPM)

• Not yet supported

37 |

Services: MI200 page migration profiling

• KFD provides ioctl to obtain a file handle used to report page migration events

• Can specify which events want reported

• Each event writes one fixed format text record to the file handle

• There is an example using it in ROCr (see SvmProfileControl)

• Planning to add page migration service to ROCprof V2 API to report these

events

38 |

Services: PC Sampling

• Based on trap handler

• Avoids requiring root privileges

• Support host call for MI200

• Host call allows PC/Queue/Dispatch/CU information to be collected

• Support host call and hardware stochastic sampling in MI300

• Stochastic sampling provides more detailed information about CU functional unit state

• Same API and buffering for both MI200 and MI300

• Design of PC sampling progressing well

• Defined KFD ioctl API

• Defined ROCr runtime API

• Designing trap handler and buffering algorithm

• Working on efficient way to capture dispatch ID

• Dispatch ID requested by HPCToolkit as it would allow to attribute PC samples to

specific dispatches

39 |

Buffers

• Used by any service that wants to provided buffered output

• User control of:

• buffer size

• buffer limit to trigger asynchronous thread to use user callback to provide records

• Client can flush buffer on demand

• Considering mode to deliver records without buffering

• Allows asynchronous operations to be reported synchronously when they happen

40 |

Client tool management

• Client can define a symbol that will be invoked when ROCprofiler API is first

used

• Avoids problems of initialization/finalization racing with global constructors

• Kernel serialization

• not cross process

41 |

Kernel dispatch serialization

• API responsible for ensuring kernel dispatches are executed serially

when necessary

• Kernel dispatch profile counting needs serialization to get meaningful results

• Need to determine how to handle multi process sharing of single device

42 |

Copyright and disclaimer

©2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate releases, for many reasons,

including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content

hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BACKUP

45 |

• Model after CPU ptrace/waitpid

• Use a single ioctl with debug functions to control AMD GPU

• A lot of effort in API design to avoid ABA and async races

• Snapshot of queues

• Transactional to avoid data races

• New queue concept to avoid ABA issues

• Snapshot information indicates if queue has pending events, queue information

• Use of file descriptor per device to communicate events: wave interrupts cause queue events

• Next pending device event: similar to waitpid for process signals

• Batched suspend/resume queues: Indicate which queues updated, which no longer exist (new queue concept)

• Redirection of device events when debugger attached (planned)
• Similar to CPU process signals being redirected to debugger by ptrace

• Currently based on CWSR

• Added standard header to context save area so debugger can obtain necessary information

• First level trap handler support CWSR

• Can invoke second level handler installed by ROCm low level runtime

AMD GPU Device Driver (KFD)

46 |

• A library to control and query the AMD GPU hardware

• Desire to abstract the specific idiosyncrasies of the hardware

• Many contortions internally to present a simple clean view

• Allows the same API to support all current and future GPU hardware

• Simple intuitive operations and concepts
• Very similar in style to using CPU ptrace and waitpid

• Use file descriptor and poll to report asynchronous events

• Makes integrating with a debugger and other tools simpler

• Hides implementation details

• Currently uses CWSR

• Could use host trap for live wave debugging in the future with no change of interface

• Necessary if extended to support graphics which does not have CWSR

• Being used by multiple tools

• ROCgdb, Perforce TotalView debugger, ROCm Debug Agent

• Full Doxygen documentation

AMD Debugger API (ROCdbgapi): Rationale

47 |

⁃ Deliberately made dependence on the runtime as minimal as possible

• Only code object loading is needed

• All other information comes directly from kernel driver

• Avoids any other interfaces to runtime

• Makes supporting different runtimes easier

⁃ Second level trap handler
• Entered due to: S_TRAP, single step, memory violation, address watch

• Halts wave and records reason

• Interrupts kernel driver which reports a queue event

• Supports code object loading

• Model after Linux dynamic loader:
• r_debug structure:

• Linked list of loaded code objects

• State variable to indicate if list being updated

• r_break function called before start/end update

• Debugger can set breakpoint to prevent updates to list while reading it

ROCm Low Level Runtime (ROCr)

	Slide 1: AMD ROCm Tools Progress: Profiler/Tracer, Debugger, OMPT, OmniTools and Binary Instrumentation Support
	Slide 2: AMD ROCm Tools Ecosystem Essentials
	Slide 3: AMD ROCm Tools Landscape
	Slide 4
	Slide 5
	Slide 6: Debugger Architecture
	Slide 7: Debugger: Features Progress
	Slide 8: Debugger: DWARF GPU Extension Proposal Chronicle
	Slide 9: Debugger: Upstreaming Effort
	Slide 10: Debugger: Compiler Support
	Slide 11: ROCm Debugger and API Useful Links
	Slide 12: OMPT Target Implementation Status
	Slide 13: OMPT Target Implementation Status in ROCm
	Slide 14: OMPT Tool Integration Status
	Slide 15
	Slide 16: Binary Instrumentation Support: AMD GPU Machine Readable XML ISA Specification
	Slide 17: Project Objectives
	Slide 18: Related Works
	Slide 19: XML ISA Info Layout
	Slide 20: Current Version of the Tool
	Slide 21: Ongoing Active Development
	Slide 22: ROCprof, Advanced Thread Trace, OmniTools and uProf
	Slide 23: Brief update on suite of AMD performance analysis tools
	Slide 24: AMD Research OmniTrace and OmniPerf AMDGPU performance model document
	Slide 25: ROCm Tools: ROCm Profiler Saga V1 V2
	Slide 26: Some V1 Issues addressed in V2 Development
	Slide 27: V2 versus V1 Delta
	Slide 28: Changes in V2 since first release
	Slide 29: Feedback on V2 received from tool developers (ROCprof and 3rd party)
	Slide 30: ROCprofiler V2 API
	Slide 31: Key Concepts
	Slide 32: Clients
	Slide 33: Services: Callback Tracing
	Slide 34: Services: Buffered Tracing
	Slide 35: Services: Performance Counter Profiling
	Slide 36: Services: Other
	Slide 37: Services: MI200 page migration profiling
	Slide 38: Services: PC Sampling
	Slide 39: Buffers
	Slide 40: Client tool management
	Slide 41: Kernel dispatch serialization
	Slide 42: Copyright and disclaimer
	Slide 43
	Slide 44: BACKUP
	Slide 45: AMD GPU Device Driver (KFD)
	Slide 46: AMD Debugger API (ROCdbgapi): Rationale
	Slide 47: ROCm Low Level Runtime (ROCr)

